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ABSTRACT The inßuence of food item availability on boll weevil, Anthonomus grandis grandis
Boheman, feeding and reproductionwasdeterminedbyprovidingdifferentnumbers of cotton squares
(ßower buds) to individual weevils. Squares were replaced daily after a 5-d feeding and mating
conditioning period. The number of lifetime punctures produced by boll weevil females and males
increased with square availability. The total number of punctures caused by boll weevil females was
2.7-fold higher than that caused bymales. Fecundity was signiÞcantly higher in the 10:1, 15:1, and 20:1
(squares:female) treatments than in the 1:1 treatment. The relationship between eggs laid per day and
the square to female ratio signiÞcantly changed over the life of the female, with the largest differences
among treatments occurring in the Þrst 3 wk of adulthood. Survival of weevil progeny to adulthood
wasabout two-foldhigher in the10:1, 15:1, and20:1 treatments than in the1:1 and5:1 treatments.When
each boll weevil female was provided 10, 15, or 20 cotton squares per day, estimates of a population
growth index (percent of immatures surviving to adulthood divided by immature development time)
and the exponential rate of increase (rm) were signiÞcantly higher than for those provided only one
or Þve squares per day. Boll weevil populations maintained at a square:weevil ratio of 10:1 or above
will increase �60-fold each generation (Ro), a rate signiÞcantly higher than that exhibited under 5:1
or 1:1 square:female regimens. These data show that daily provision of 10 squares per female provides
sufÞcient resources to elicit a maximal oviposition response in the laboratory. Our results also will be
useful in predicting changes in boll weevil populations relative to crop phenology and starting
population density.
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THE BOLL WEEVIL, Anthonomus grandis grandis Bohe-
man, remains a key pest of cotton (Gossypium hirsu-
tum L.) in areas of the U.S. cotton belt from which it
has not been eradicated. The female boll weevil feeds
and oviposits primarily in the ßower buds (squares) of
cotton. Understanding the effects of host plant avail-
ability on feeding and oviposition behavior is of par-
ticular importance in evaluating the potential for pop-
ulation growth and crop injury by the boll weevil.
Bottrell (1976) indicated that the reproductive po-
tential of Þeld populations of the boll weevil was
highly variable, and he presumed that large popula-
tions limited further population growth by reducing

available oviposition sites. Sterling and Adkisson
(1978) also reported adensity-dependent relationship
between boll weevil population level and subsequent
population growth. These authors concluded that the
carrying capacity of a cotton Þeld for boll weevils was
dependent on square availability. However, it cannot
be determined from these reports if reduced square
availability limits population growth through reduc-
tions in the survival rates of larvae in squares contain-
ing multiple eggs or if oviposition rates of adults also
are reduced.
Preliminary studies have indicated that limited

square availability can inßuence reproductive devel-
opment of the female weevil (Spurgeon and Raulston
1997). However, available estimates of oviposition or
fecundity from laboratory studies have either omitted
useful descriptions of the sizes and numbers of cotton
squares provided to weevils (Cushman 1911, Isley
1928, Cole and Adkisson 1982) or if the number of
squares provided were less than the average daily
production of eggs (Lambert et al. 1979, Roach 1979)
and thusmay have been limiting. Our objectives were
to gain additional insight into the inßuences of square
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availability on potential population growth by exam-
ining the rates at which feeding and oviposition punc-
tures are produced, and the survival of offspring in
response to discrete levels of square availability.

Materials and Methods

BollWeevilCulture andCotton Squares.Adult boll
weevils were reared from Þeld-collected infested
squares. Approximately 1,000 infested squares were
collected from the ground in cotton Þelds in the
Lower Rio Grande Valley of Texas in June 2000.
Squares were carefully dissected, and those with live
third instars were closed back up and held within
screencages inanenvironmental chamberat 27�1�C,
65% RH, and a photoperiod of 14:10 (L:D) h. Tem-
perature and humidity were monitored by a Fisher-
brand Traceable Relative Humidity Meter with tem-
perature readout (Fisher Cat. No. 11Ð661-12, Control
Company, Friendswood, TX).After completion of lar-
val development, pupae were harvested from squares
and placed in 9-cm diameter petri dishes (Þve per
petri dish) containing a shallow layer of moist ver-
miculite. Pupae were examined daily until adult eclo-
sion. On the day of eclosion, adults were sexed using
the method of Sappington and Spurgeon (2000),
weighed on an analytical balance, and males were
markedwith redpainton the rightelytron.Onlyadults
weighing between 10Ð15 mg on the day of eclosion
were used in the study. Mating of the weevils was
facilitatedbya5-dconditioningperiodunder the same
environmental conditions used for rearing adults.
During this period,mixed-sex groups of 20weevils (10
males and 10 females) were held in 15-cm diameter
petri dishes. Each dish was ventilated by a 4-cm di-
ameter circular screened hole in the lid. Each dish
contained a cotton wick saturated with water and was
provisioned daily with Þve uninfested, greenhouse-
grown squares (7Ð10 mm diameter at the widest part
of the ßower bud)with intact bracteoles.We assumed
all females weremated by the end of the conditioning
period.

Design of Experiments. Sixty 6-d-old female boll
weevils were randomly selected from the conditioned
population to provide estimates of feeding and ovi-
position activities and fecundity. The experimental
treatments consisted of discrete levels of square avail-
ability. Twenty, 12, 10, 10, and 8 femaleswere assigned
to respective square availability treatments of 1, 5, 10,
15, and 20 squares per female. Each female was held
individually in a plastic petri dish (15 by 2.5 cm) with
a lid vented as previously described. The designated
number of fresh uninfested greenhouse-grown
squares (7Ð10 mm diameter) with intact bracteoles
were provided to each female daily. Corresponding
treatments with the same sample sizes were estab-
lished for male weevils so the puncturing rates of the
sexes could be compared. All weevils were held in an
environmental chamber under the same environmen-
tal conditions used for rearing adults.
Squareswere removeddaily for thedurationofeach

weevilÕs life, and punctures were counted under a

dissecting microscope. An oviposition puncture was
distinguished froma feedingpunctureby thepresence
of either a waxy substance sealing or encircling the
opening of the punctures, a frass plug in the puncture,
or the presence of both a frass plug and the waxy
substance. Punctures lacking both characteristics
were categorized as feedingpunctures. Feedingpunc-
tures also tended to be somewhat larger in diameter
than oviposition punctures.
The total number of punctures in each square

(feeding � oviposition) was used as a measure of boll
weevil puncturing activity according to themethod of
Everett and Earle (1964). Everett and Ray (1962)
reported that the number of sealed punctures is a
reliable estimate of oviposition. However, Cushman
(1911) observed thatmany punctures containing eggs
were not sealed with a frass plug. In addition, mated
weevils occasionally deposit eggs on the external sur-
faces of the square (Mayer and Brazzel 1963). Rec-
ognizing these potential limitations, we used the num-
ber of oviposition (sealed) punctures as a relative
measure of egg production, because most reports of
boll weevil oviposition are based on such counts, and
dissection of eggs from the squares would have pre-
vented subsequent estimation of fecundity and sur-
vival.
Two daily cohorts, one of Þve and one of seven

randomly selected squares with sealed punctures,
were removed from each treatment and held in sep-
arate 15 by 1.5-cm petri dishes with ventilated tops
under the same environmental conditions as the
adults. The extent of egg hatchwas estimated 2 d after
oviposition by dissecting the cohort of Þve infested
squares from each treatment for each of 35 d (35 total
cohorts/treatment) and counting the number of lar-
vae.Adult eclosionrateandsex ratioofemergedadults
were determined for each treatment from the cohort
of seven squares (40 total cohorts/treatment). Time
for development fromegg to adultwas recorded for 10
individuals from each treatment. For the duration of
each maleÕs life, the squares were removed daily, and
feeding punctures were counted under a dissecting
microscope.

Statistical Analyses. The inßuence of square avail-
ability levels on adult longevity, life-time fecundity of
females, numbers of feeding and oviposition punc-
tures by females and males, and total development
time of progeny (egg to adult) were examined with
one-way analyses of variance (ANOVA) using PROC
GLM (SAS Institute 1998). Because new cotton
squares were provided daily for the entire life of each
adult female and because longevity varied among in-
dividual females, statistical analyses were performed
ondaily observations of oviposition activity. Thenum-
bers of sealed punctures per square per day for each
weevil were subjected to a repeated measures analy-
sis, with time and the daily number of squares exposed
as factors, using PROC MIXED of SAS (Littell et al.
1997). The number of oviposition punctures were log
(x � 1)-transformed, and proportion data were arc-
sine-square root transformedbefore statistical analysis
(Sokal and Rohlf 1981), but results are presented as
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nontransformed means. Where signiÞcant F values
were obtained, means were separated using TukeyÕs
studentized range test (� � 0.05; Wilkinson et al.
1992).
The homogeneity of boll weevil survival curves in

the different treatments was tested by a likelihood
ratio using the LIFETEST procedure of SAS (SAS
Institute 1998). Subsequently, the LIFETEST proce-
dure was used to perform pairwise comparisons of the
survival curves.
For each of the Þve treatments, the sex ratio (male:

female) of the total progeny of each female was Þrst
compared with a 1:1 ratio using a �2 test for goodness-
of-Þt. Then, an ANOVA was conducted to determine
if sex ratio was affected by treatment.
The relationship between the number of squares

punctured (y) by females and the number of squares
offered (x) was described using the quadratic equa-
tion, y � a � bx � cx2.The coefÞcients a, b, and cwere
calculated using the nonlinear function of SigmaPlot
5.0 (SPSS 2000).
An estimate of boll weevil population growth rate

was obtained for each square availability treatment by
calculating life table statistics (Southwood 1966). For
each treatment, the jackknife programofHulting et al.
(1990) was used to calculate net reproductive rate
(R0), the intrinsic rate of natural increase (rm), the
Þnite capacity of increase (�, deÞned as the number
of times apopulationmultiplies itself per unit of time),
mean generation time (T), doubling time (DT) of the
population, and total progeny produced per female.
The population growth index (GI) was calculated by
dividing the percentage survival of immatures by de-
velopment time (Sétamou et al. 1999).

Results

The number of lifetime punctures increased with
square availability for both females (F � 9.1; df� 4, 55;
P � 0.01) and males (F � 14.4; df � 4, 55; P � 0.01).
Female feeding and oviposition punctures combined
averaged 2.7-fold higher than the number of feeding
punctures made by males across all treatments (F �
16.8; df � 9, 110; P � 0.01; Fig. 1).
The quadratic function, y � 0.14 � 0.64x � 0.024x2,

indicated a signiÞcant relationship between the mean
number of squares punctured per day (y) and the
number of squares offered per day (x) (F � 41.7; df�
2, 58; P � 0.01; R2 � 0.72; Fig. 2). The mean number
of squares punctured increased with availability to a
peak of about 4 squares per day when offered 10Ð15
squares and decreased slightly when 20 squares were
offered.
The number of squares provided per female did not

signiÞcantly affect the proportion of progeny that
were female or their development time (Table 1).
However, square availability did affect estimated per-
cent egg hatch (F � 5.2; df � 4, 170; P � 0.01) and
subsequent survival to the adult stage (F � 10.8; df �
4, 195; P � 0. 01). Bothwere signiÞcantly higher in the
10:1, 15:1, and 20:1 treatments than in the 1:1 and 5:1
treatments (Fig. 3).

Fecundity (lifetime apparent oviposition) was
about three-fold higher in the 10Ð20:1 treatments than
in the 1:1 treatment (Table 1). Both time (day) (F �
79.2; df � 1, 2,338; P � 0.01) and number of squares
available per boll weevil female (F � 17.0; df � 4, 55;
P � 0.01) signiÞcantly affected the number of eggs
oviposited (Fig. 4). In addition, the time by square
availability interactionwas signiÞcant (F � 7.2; df� 4,
2,338; P � 0.01), indicating that the temporal pattern
of oviposition activity changed with changes in the
number of squares available. When treatments were
analyzed separately, the effects of time (day) signif-
icantly affected the number of eggs laid only for the

Fig. 1. Mean (�SE) lifetime punctures by boll weevil
females and males provided different numbers of squares
daily. Different letters indicate signiÞcant differences be-
tween sexes within a treatment (TukeyÕs honestly signiÞcant
difference [HSD], � � 0.05).

Fig. 2. Aquadratic equation relating themeannumberof
squares attacked (punctured) per boll weevil female per day
over their lifetime to the number of squares offered per day.
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10:1 (F � 2.4; df � 58, 291; P � 0.01; Fig. 4C) and 15:1
(F � 2.3; df � 57, 334; P � 0.05; Fig. 4D) treatments.
In the 10:1 treatment, mean oviposition increased dra-
matically by the third day after eclosion, peaked near
15 sealed punctures per day at �10 d, and gradually
declined thereafter (Fig. 4C). In contrast, when fe-
males were provided only one square per day, mean
oviposition punctures plateaued by the second day of
oviposition at �2.5 eggs per day, with slight increases
occurring only at�6wk, near the endof life (Fig. 4A).
The survivorship curves were signiÞcantly affected

by the number of squares offered (�2 � 10.3; df � 4;
P � 0.04; Fig. 5). Longevity was signiÞcantly higher in
the 20:1 treatment than in other treatments, which
were similar (Table 1).
When boll weevil females were provided with 10,

15, or 20cotton squaresperday, thepopulationgrowth
indices (GI) were about two-fold higher than when
weevils were provided only one or Þve squares (Fig.
6). A signiÞcant treatment effect on GI was indicated
by the log-normal equation:

y � yo � a 	 e[�0.5{ln(x/xo)/b}2]

where a � 1.6, b � 0.6, xo � 12.6, and yo � 0.8.

The values of life table statistics calculated for boll
weevil females varied with the ratio of squares to
females (Table 2). The populations of boll weevils
maintained at square:weevil ratios of 10:1, 15:1, or 20:1
were predicted to grow at signiÞcantly higher mean
constant exponential rates (rm) than thosemaintained
on squares at ratios of 5:1 or 1:1.When the numbers of
cotton squares were increased from 1 to 10, 15, or 20
per female, the total number of progeny produced per
female increased 3.2- to 4.8-fold (Table 2). Life table
calculations indicated that boll weevil populations
maintained at a square:weevil ratio of 10:1 or above
will increase �60-fold each generation (R0), a rate
signiÞcantlyhigher than that exhibitedunder 5:1 or 1:1
square:female regimens.

Discussion

Boll weevil females produced 2.7 times more punc-
tures than males. Hunter and Pierce (1912) reported
that damage inßicted by female boll weevils is �5
times that of males, and Lloyd et al. (1961) also found
that females damaged fruit at signiÞcantly higher rates
than males. These results generally agree with our
observations, but direct comparisons are not possible
because of differing experimental conditions.
The quadratic function indicated that daily square

availability of �15 squares per weevil resulted in a
decrease in the total number of squares punctured.
This apparent inconsistency suggests the observed
reduction in the number of squares punctured at the
highest level of square availability may have been
artifactual or a consequence of the small sample size
for that feeding treatment.
When resources are in short supply, competition

between individuals within a population may reduce
reproductive rate and survival (Varley et al. 1974).
Our results suggest that boll weevil populations may
be regulated in part by a density-dependent mecha-
nism based on the availability of squares of suitable
size and condition for oviposition. Estimates of the
intrinsic rate of increase (rm) and of the population
growth index (GI) indicate that availability of ovipo-
sition sites become progressively more limiting as the
ratio of squares to females decreases below 10:1. The
manifestation of this limitation is three-fold. First, fe-

Table 1. Effects of the number of cotton squares provided daily per boll weevil female on sex ratio, development (egg to adult) times
of progeny, lifetime fecundity, and longevity

Cotton squares per
female per day

Percentage of
female progenya

Development
time (d)b

Lifetime fecundity
(sealed punctures)/femalec Longevity (d)d

1 40.1 � 1.0a 22.7 � 2.4a 83.2 � 13.5b 37.1 � 4.6b
5 43.4 � 4.4a 21.2 � 2.7a 187.6 � 38.6ab 36.8 � 5.1b
10 54.0 � 3.4a 21.0 � 3.8a 283.6 � 44.7a 34.9 � 4.8b
15 51.3 � 2.8a 20.8 � 2.8a 259.3 � 39.2a 35.3 � 6.6b
20 52.8 � 2.3a 20.7 � 4.4a 232.9 � 38.0a 59.8 � 3.1a

a ANOVA: F � 1.1; df � 4, 195; P � 0.374. Means (�SE) did not differ signiÞcantly from 50% (�2 � 9.24; df � 4; P � 0.08).
b ANOVA: F � 0.608; df � 4, 45; P � 0.659.
c ANOVA: F � 7.8; df � 4, 55; P � 0.02
d ANOVA: F � 2.9; df � 4, 55; P � 0.03.
Means (� SE) within a column followed by the same letter are not signiÞcantly different (Tukey HSD, test).

Fig. 3. Mean(�SE)percentageof eggs thathatched, and
survival to adulthood, in relation to the number of squares
provided per boll weevil female. Means with the same low-
ercase or uppercase letters, respectively, across treatments
are not signiÞcantly different (TukeyÕs HSD, � � 0.05).
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Fig. 4. Lifetime proÞles of daily mean (�SE) oviposition activity of boll weevils in response to different levels of daily
square availability (no. squares:female): (A) 1:1; (B) 5:1; (C) 10:1; (D) 15:1; and (E) 20:1.
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males laid fewer eggs per lifetimewhen providedwith
Þveor fewer squaresperday.Although thepercentage
of squares infested with boll weevil larvae was �2.0-
fold greater in the 1:1 treatment than in the 10:1 treat-
ment, there were fewer total punctures in the 1:1 and
5:1 treatments than in the10:1 treatment.This suggests
a reduction in oviposition and feeding behavior asso-
ciated with an increase in square damage. Lifetime
proÞles of daily oviposition activity among females

with abundant or limited square availability (Fig. 4)
reveal the consequences of an inadequate number of
oviposition sites. Average longevity was the same in
either case, and although females in the 1:1 treatment
may have slightly increased their oviposition activity
late in life, the number of oviposition punctures pro-
duced remained limited. Thus, our data suggest that
heavity damaged squares negatively inßuence both
oviposition and feeding behavior, either directly
through negative cues associated with square damage
or indirectly through the loss of positive cues associ-
ated with acceptable oviposition or feeding sites.
Second, the percentage of oviposited eggs that

hatched, indicated by the presence of larvae, was
lowest in the 5:1 and 1:1 treatments. It is possible that
the higher number of punctures in these treatments
increased the likelihood of direct damage to eggs al-
ready oviposited or negatively altered the microenvi-
ronment of oviposited eggs, perhaps through faster
desiccation or decay of a heavily damaged square.
Finally, the percentage of larvae that survived to

adulthood was lowest in the 5:1 and 1:1 treatments.
Again, it is likely that deterioration of the heavily
damaged squares contributed to low survival rates.
Cannibalism or intraspeciÞc competition among mul-
tiple larvae in a square may also have limited survival.
In summary, our data indicate that the daily number

of undamaged squares to which boll weevil females
have access affects the number of sealed punctures
(and presumably the number of eggs laid), the num-
ber of feeding punctures, survival of progeny to adult-
hood, and the ultimate number of adult progeny pro-
duced per lifetime. The threshold at which squares

Fig. 5. Survivorship proÞles of boll weevil females in response to different levels of daily square availability (1:1, 5:1, 10:1,
15:1, or 20:1, squares:female).

Fig. 6. Population growth indices of boll weevil females
in relation to the number of squares offered. Growth index
(GI) � percentage immature survival to adulthood divided
by immature development time (d). The relationship be-
tween the GI and the number of squares provided was es-
timated with a log-normal equation (F � 223.4; df� 3, 4; P �
0.05).
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become limiting for these parameters seems to lie
between 5 and 10 squares per female per day. The life
table statistics generated from these data will help
improve our capacity to predict square loss and
changes in boll weevil populations in the Þeld, given
a starting density of suitable squares for oviposition
and a corresponding starting population density of
weevils.
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Table 2. Life table statistics of boll weevil females as affected by the number of cotton squares provided daily per female (Values in
parentheses are 95% confidence intervals)

Cotton squares
per female

Ro rm � T DT Total progeny

1 21.5 � 3.5 (14.6Ð28.4) 0.241 � 0.018 (0.201Ð0.289) 1.27 12.8 2.89 40.6 � 6.6 (27.7Ð53.5)
5 32.6 � 6.7 (19.5Ð45.7) 0.298 � 0.021 (0.258Ð0.338) 1.35 11.7 2.34 75.4 � 15.5 (45.0Ð105.8)
10 102.3 � 16.1 (70.7Ð133.9) 0.446 � 0.026 (0.396Ð0.496) 1.56 10.4 1.56 193.4 � 30.5 (133.6Ð253.2)
15 80.0 � 12.1 (56.3Ð103.7) 0.389 � 0.026 (0.339Ð0.439) 1.47 11.3 1.76 156.1 � 23.6 (109.7Ð202.4)
20 68.8 � 11.3 (47.7Ð90.9) 0.395 � 0.019 (0.355Ð0.435) 1.48 10.8 1.76 130.2 � 21.4 (88.3Ð172.1)

Ro net reproductive rate; rm, intrinsic rate of increase; �, Þnite rate of increase; T, mean period over which progeny are produced (d); DT,
doubling time of the population (d).
Total progeny production was calculated using the jackknife program of Hulting et al. (1990).
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